Summarize this article:
Last updated on October 9, 2025
We use the derivative of 2xe^x as a tool to measure how the function changes in response to a slight change in x. Derivatives are crucial in calculating various real-life applications, such as rates of change in physical systems. We will now discuss the derivative of 2xe^x in detail.
We now understand the derivative of 2xe^x. It is commonly represented as d/dx (2xe^x) or (2xe^x)', and its value is 2xe^x + 2e^x. The function 2xe^x has a well-defined derivative, indicating it is differentiable across its domain.
The key concepts are mentioned below:
Exponential Function: (e^x is the base of natural logarithms).
Product Rule: Rule for differentiating 2xe^x (since it consists of a product of 2x and e^x).
The derivative of 2xe^x can be denoted as d/dx (2xe^x) or (2xe^x)'. The formula we use to differentiate 2xe^x is: d/dx (2xe^x) = 2xe^x + 2e^x The formula applies to all x in the real number system.
We can derive the derivative of 2xex using proofs. To show this, we will use differentiation rules.
There are several methods we use to prove this, such as:
Verification by First Principle We will now demonstrate that the differentiation of 2xex results in 2xex + 2ex using the above-mentioned methods:
To prove the differentiation of 2xex using the product rule, Consider f(x) = 2x and g(x) = ex So we get, 2xex = f(x)·g(x) By product rule: d/dx [f(x)·g(x)] = f'(x)·g(x) + f(x)·g'(x) Let’s substitute f(x) = 2x and g(x) = e^x, d/dx (2xex) = (2)(ex) + (2x)(e^x) = 2ex + 2xex Thus, d/dx (2xe^x) = 2xe^x + 2e^x
The derivative of 2xex can be verified using the First Principle, which expresses the derivative as the limit of the difference quotient. To find the derivative of 2xex using the first principle, we will consider f(x) = 2xex. Its derivative can be expressed as the following limit. f'(x) = limₕ→₀ [(f(x + h) - f(x)) / h] Given that f(x) = 2xex, we write f(x + h) = 2(x+h)e(x+h). Substituting these into the equation, f'(x) = limₕ→₀ [(2(x + h)e(x + h) - 2xex) / h] = limₕ→₀ [2xe(x + h) + 2he(x + h) - 2xex] / h = limₕ→₀ [2xex(eh - 1) + 2he(x + h)] / h By dividing each term by h, we have: = limₕ→₀ [2xex (eh - 1)/h + 2e(x + h)] Using the limit formula limₕ→₀ (eh - 1)/h = 1, = 2xex (1) + 2ex = 2xex + 2ex Hence, verified.
When a function is differentiated several times, the derivatives obtained are referred to as higher-order derivatives. Higher-order derivatives can be a bit complex. To understand them better, consider a car whose speed changes (first derivative) and the rate at which the speed changes (second derivative) also changes. Higher-order derivatives make it easier to understand functions like 2xex.
For the first derivative of a function, we write f′(x), indicating how the function changes or its slope at a certain point. The second derivative is derived from the first derivative, which is denoted using f′′(x). Similarly, the third derivative, f′′′(x), is the result of the second derivative, and this pattern continues.
For the nth Derivative of 2xex, we generally use fⁿ(x) for the nth derivative of a function f(x), which tells us the change in the rate of change.
When x = 0, the derivative of 2xex = 2xex + 2ex = 0 + 2 = 2.
When x approaches negative infinity, the derivative tends toward 0, as ex approaches 0.
Students frequently make mistakes when differentiating 2xex. These mistakes can be resolved by understanding the proper solutions. Here are a few common mistakes and ways to solve them:
Calculate the derivative of (2xe^x·e^x)
Here, we have f(x) = 2xex·ex. Using the product rule, f'(x) = u′v + uv′ In the given equation, u = 2xe^x and v = e^x. Let’s differentiate each term, u′ = d/dx (2xex) = 2xe^x + 2e^x v′ = d/dx (e^x) = e^x Substituting into the given equation, f'(x) = (2xe^x + 2e^x)(e^x) + (2xe^x)(e^x) Let’s simplify terms to get the final answer, f'(x) = 2xe^(2x) + 2e^(2x) + 2xe^(2x) = 4xe^(2x) + 2e^(2x) Thus, the derivative of the specified function is 4xe^(2x) + 2e^(2x).
We find the derivative of the given function by dividing the function into two parts.
The first step is finding its derivative and then combining them using the product rule to get the final result.
A company is analyzing the growth of its revenue using the function R(x) = 2xe^x, where x represents time in months. Calculate the rate of change of revenue at x = 3 months.
We have R(x) = 2xe^x (revenue function)...(1) Now, we will differentiate the equation (1) Take the derivative of 2xe^x: dR/dx = 2xe^x + 2e^x Given x = 3 (substitute this into the derivative) dR/dx = 2(3)e^3 + 2e^3 = 6e^3 + 2e^3 = 8e^3 Hence, the rate of change of revenue at x = 3 months is 8e^3.
We find the rate of change of revenue at x = 3 months as 8e3, indicating that at the specified time, the revenue increases significantly due to the exponential growth factor.
Derive the second derivative of the function R(x) = 2xe^x.
The first step is to find the first derivative, dR/dx = 2xe^x + 2e^x...(1) Now we will differentiate equation (1) to get the second derivative: d²R/dx² = d/dx [2xe^x + 2e^x] = d/dx [2xe^x] + d/dx [2e^x] Using the product rule on 2xe^x: = 2xe^x + 2e^x + 2e^x = 2xe^x + 4e^x Therefore, the second derivative of the function R(x) = 2xe^x is 2xe^x + 4e^x.
We use the step-by-step process, where we start with the first derivative.
Using differentiation rules, we simplify the terms to find the second derivative.
Prove: d/dx ((2xe^x)^2) = 8xe^x(2xe^x + e^x).
Let’s start using the chain rule: Consider y = (2xe^x)^2 To differentiate, we use the chain rule: dy/dx = 2(2xe^x)·d/dx [2xe^x] Since the derivative of 2xe^x is 2xe^x + 2e^x, dy/dx = 2(2xe^x)(2xe^x + 2e^x) = 8xe^x(2xe^x + e^x) Hence proved.
In this step-by-step process, we used the chain rule to differentiate the equation.
Then, we replace 2xex with its derivative.
As a final step, we simplify to derive the equation.
Solve: d/dx (2xe^x/x)
To differentiate the function, we use the quotient rule: d/dx (2xe^x/x) = (d/dx (2xe^x)·x - 2xe^x·d/dx(x))/ x² We will substitute d/dx (2xe^x) = 2xe^x + 2e^x and d/dx (x) = 1 = [(2xe^x + 2e^x)·x - 2xe^x] / x² = [2xe^x·x + 2e^x·x - 2xe^x]/ x² = [2x²e^x + 2xe^x - 2xe^x]/ x² = 2x²e^x/ x² = 2e^x Therefore, d/dx (2xe^x/x) = 2e^x
In this process, we differentiate the given function using the product rule and quotient rule.
As a final step, we simplify the equation to obtain the final result.
Jaskaran Singh Saluja is a math wizard with nearly three years of experience as a math teacher. His expertise is in algebra, so he can make algebra classes interesting by turning tricky equations into simple puzzles.
: He loves to play the quiz with kids through algebra to make kids love it.